If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14x^2+58x-16=0
a = 14; b = 58; c = -16;
Δ = b2-4ac
Δ = 582-4·14·(-16)
Δ = 4260
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4260}=\sqrt{4*1065}=\sqrt{4}*\sqrt{1065}=2\sqrt{1065}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(58)-2\sqrt{1065}}{2*14}=\frac{-58-2\sqrt{1065}}{28} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(58)+2\sqrt{1065}}{2*14}=\frac{-58+2\sqrt{1065}}{28} $
| 5(3x+4)=2(4x-7) | | 15x+20=8x-14 | | 7s-20=85 | | -w+5=10 | | 4x^2+4x=-15 | | 12x=220 | | 6m-20=64 | | 56-11x=21 | | 49y-8=90 | | 8x+1=−7 | | 7x+5=–2x+68 | | 4x-20=(4x-8)/12 | | 2x-18=9x+9 | | 500(t)=-16t^2+175 | | N^2+2n+4=136 | | x°3=2x+4 | | 7z-5=2-11 | | xx+24=5x | | 2n+14=50 | | (3x+7)^8=0 | | 6x+7=-137-10 | | 6.√x-√x=16 | | 3x-1/7=2 | | 3x-1÷7=2 | | 10x+4/7=3 | | 2(x-7)=x-4+3 | | 2) 4(2x-5)+8(3x-5)=5(4x-3)-3(2x-3) | | 2x^2-20x+96=64 | | ⅔x=16 | | -(8+3x)+5=2x+6 | | 167+11x=200 | | x^2-x+13=-9x-2 |